语音识别
贾克里尼用信息论的思维方式看待语音识别问题,他认为语音识别是一个通信问题。
贾里尼克是这样考虑问题的。当说话人讲话时,他是用语言和文字将他的想法编码,这就变成了一个信息论的问题。语言和文字无论是通过空气传播,还是电话线传播,都是一个信息传播问题,在通信中有一套对应的信道编码理论。在听话人,也就是接收方那里,他再做解码的工作,把空气中的声波变回到语言文字,再通过对语言文字的解码,得到含义。
于是,贾里尼克就用通信的编解码模型,以及有噪音的信道传输模型,构建了语音识别的模型。但是这些模型里面有很多参数需要计算出来,这就要用到大量的数据,于是,贾里尼克就把上述问题又变成了数据处理的问题了。
在这样的思想指导下,贾里尼克裁掉了IBM全部的语言学家,并且对各种仿生学,比如研究人耳蜗的模型完全不感兴趣,他只注重收集数据,训练各种统计模型。
那么这样能否解决语音识别问题呢?在一开始,学术界确实有人怀疑,不过贾里尼克很快用结果回答了大家。
在短短几年时间里,他的团队(都是数学家和数学很好的理论物理学家)就将语音识别的规模扩大到22000词,错误率降低到10%左右。这是一个质的飞跃,从此数据驱动的方法在人工智能领域站住了脚。
贾里尼克思想的本质,是利用数据(信息)消除不确定性,这就是香农信息论的本质,也是大数据思维的科学基础。这就是第一类应用,把人工智能问题变成数据问题带给我们的启示。
机械思维 -> 系统思维 -> 大数据思维,对相关性的依赖由强变弱。
让计算机处理自然语言是数学问题,而不是我们通常理解的语言学问题。
语言以及语言要表达的含义,都只是表象,本质还是信息和不确定性。